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Abstract. A class of nonconvex minimization problems can be classified as hidden convex
minimization problems. A nonconvex minimization problem is called a hidden convex mini-
mization problem if there exists an equivalent transformation such that the equivalent
transformation of it is a convex minimization problem. Sufficient conditions that are inde-
pendent of transformations are derived in this paper for identifying such a class of seemingly
nonconvex minimization problems that are equivalent to convex minimization problems.
Thus, a global optimality can be achieved for this class of hidden convex optimization
problems by using local search methods. The results presented in this paper extend the reach
of convex minimization by identifying its equivalent with a nonconvex representation.
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1. Introduction

We consider in this paper the following optimization problem:

min_ go(x)
s.t. gi(x)<b;, i=1,....m (1)
xekX
where g; : R" — R,i=0,1,...,m, are second-order differentiable functions
and
X={xeR'|i<xi<u;, i=1,...,n}. (2)

Without loss of generality, we assume 0 < /; <u; fori=1,...,n.
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If all g;(x),i=0,1,...,m, are convex functions, problem (1) is a convex
minimization problem whose local minimum is also a global minimum. A
very natural question to ask is what are the nonconvex situations of (1)
where a local minimum is also guaranteed to be a global minimum.

Convexity plays a central role in mathematical economics, engineering,
management science, and optimization theory. One main reason behind its
wide applications and cross-board success is that the convexity is a suffi-
cient condition for ensuring that a local optimal solution is also a global
one. Convexity, however, is not a necessary condition for a local minimum
to be a global one. In the real world, the problems that present a convexity
may only cover a small percentage of a large population. Therefore,
researchers have been exploring the situations where the convexity condi-
tion can be relaxed to certain degree, while at the same time some nice
properties similar to those enjoyed by convex functions are preserved. The
convexity has been extended to various forms of a generalized convexity in
the literature [1, 8]. Examples of the generalized convex functions include
pseudoconvex functions, quasiconvex functions and invex functions [3].
Optimality and duality for generalized convex functions are investigated in
[6].

Horst [4] discussed convexification of nonconvex functions that can be
transformed into convex ones using either a range transformation or a
domain transformation. A convex range transformable function must be
also quasiconvex. Ben-Tal and Teboulle [2] considered a singly and qua-
dratically constrained quadratic problem and proved that, under certain
conditions for simultaneous diagonalization, the dual of the dual problem
of the primal problem leads to a convex problem which is completely
equivalent to the nonconvex primal problem. Ben-Tal and Teboulle [2] also
showed that a special problem of minimizing a concave quadratic function
subject to finitely many convex constraints is equivalent to a minimax con-
vex problem. Recent results in [5] revealed that via an equivalent transfor-
mation using a pth-power method a monotone nonconvex optimization
problem can be always converted into an equivalent better-structured non-
convex optimization problem, e.g., a concave minimization problem or a
D.C. programming problem. A general theory of convexification transfor-
mations was further developed in [7] in the context of monotone global
optimization.

The primal goal of this paper is to identify a class of seemingly noncon-
vex optimization problems that can be converted into equivalent convex
minimization problems. Problem (1) is called a hidden convex minimization
problem in this paper if there exists an equivalent transformation such that
the equivalent transformation of (1) is a convex minimization problem.
Sufficient conditions are derived in this paper to identify such hidden con-
vex problems. One prominent feature of the results in this paper is that



HIDDEN CONVEX MINIMIZATION 213

these derived conditions are independent of transformations. A global opti-
mality can be achieved for hidden convex minimization problems by using
local search methods. The results presented in this paper extend the reach
of convex minimization by identifying its equivalent with a nonconvex rep-
resentation.

This paper is organized as follows. In Section 2, we state a basic theorem
that reveals an equivalence between certain hidden convex function and its
convex counterpart. In Section 3, we give the equivalence of a primal hid-
den convex problem and its transformed convex programming problem.
Then we obtain some conditions under which a programming problem is
hidden convex. In Section 4, we focus on quadratic programming problems
and derive some conditions for hidden convexity. The paper concludes in
Section 5 with a case study that demonstrates a high possibility of occur-
rence of hidden convexity in nonconvex situations.

2. Convexification Transformation

Let function /& € C? be defined on X in (2).

DEFINITION. A function /: R" — R is increasing (decreasing) on X with
respect to x; if

h(xl,...,xi_l,x},x,-H,...,x,,)g(;) h(xl,...,xf_l,xl?,xiﬂ,...,xn)

1 2 12 )
for any x; < x;, where x;,x; € X; = {x;|(>1, ..., Xi—1, Xi, Xiy1, ..., Xp) € X};

1)
A function /& : R" — R is strictly increasing (decreasing) on X with respect
to Xx; if
B(X1, oy X1, X Xty o Xn) < () A(X1, -y Xi1, X2, Xidy - -+ 5 Xn)

for any x! < x?, where x!,x? € X;.

DEFINITION. A function 4 : R" — R is said to be monotone on its domain

X if & is increasing or decreasing on X with respect to all x;,i=1,...,n; A

function 4 defined on X is said to be strictly monotone if 4 is strictly

increasing or strictly decreasing on X with respect to all x;,i=1,...,n.
Consider the following variable transformation of function /(x):

i) =10 ) G)
where p = (p1,...,ps) is a parameter vector and #,(y) : R" — R" is a sepa-
rable mapping, i.e., £,(y) = (tip,(V1)s -, tap, (W) for y = (v1,...,ya). We
further assume that each of 1, (y;) € C?,i=1,...,n, is a one-to-one map-

ping. The domain of /,(y) is
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Y,={yeR'y= t;pl[_(x,-), i=1,...,n(x1,...,x,) € X}. (4)

Clearly, Y, is still a box and is thus convex. Let Q be an open set satisfying
Y, C Q for all p. Denote

Q={yvie Rl(yi,-. -\ Vis---yyn) €EQ}, i=1,...,n.

Let S” be the unit sphere in R". Let minx = +o00, max x = —oo for a pur-
pose of convenience. xel xel

DEFINITION. If there exists a one-to-one mapping x = f1,(y) such that
h,(y) defined in (3) is convex, then the function /(x) is called a hidden con-
vex function.

Denote by #; and (; upper and lower bounds of 0h/0x; over
X, i=1,...,n, respectively, i.e.,

Oh(x)
i = max =5 - (5)
. Oh(x)
Cl‘SI){lel}’(l 8x,~ (6)

Denote by 4 a lower bound of the minimum eigenvalue of the Hessian of 4
over X, i.e.,

<minA(x) = min d’
A< gg)r(l)(x) Xer)r(}gelsnd H(x)d, (7)

where H(z) is the Hessian of /1 at z and A(x) is the minimum eigenvalue of

H(x).
Denote
(1 a=0
S(“)_{o a<0 (8)
Let
ACE)
m;,, = min 9)

i, (fz'fpl,- (xf)) (10)
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ajp, = mip(s(8) + My (is(=E) (11)
bip, = mipns(n;) + M pn:s(—n;) (12)

B ={pilaip,= — 4, mjp >0}
U{pi|biypi> -4 M,-ml.SO} (13)

Bi ={pilaip, > =2, m;,, =0}
U {pi|biapi > _/1’ MiJ’i <0} (14)

THEOREM 2.1. Assume that #;,,i=1,...,n, are strictly monotone func-
tions on €; and satisfy tﬁ.’pi(yi) £ 0 for any y; € Q;. Furthermore, for any
i=1,...,n,t;, is either convex or concave on €;.

If for all i=1,...,n,B; # 0, then h,(y) is a convex function on Y, when
pi€Bii=1,...,n; and if for all i=1,...,n,B; # (), then hy(y) is strictly
convex on Y, when p; € B;,i=1,...,n.

Proof. Let x = t,(y),Vy € Y,. By (3), we have

Ohy(y) _ 0h(x) ,

e~ o k) k=12m
azhp(y) _82h(x) / 2 8h(x) "
Ph(x)  Oh(x) 1, (k)
= k(yk)]zl + Pk . k=1,2,....n
ox;  Ox [, (o)l
Ph,(y) 0*h(x) , . .
8ykpa(y]) :8Xk(8.)3]’ [k,pk(yk)[jﬁpf(yj)v k7 J = 1)2’ e ’nv k ;é]
Let
A0 = diag (,00) 11, (0) ). (15)
, oh(x) t, (1) Oh(x) t,, (Vn)
B(x) = d1ag<a() P S a() 2 2>. (16)
X1 [Zl,pl(yl)] Xn [tn.,p,,(y”)]

Denote the Hessian of /,(y) by H,(y). Then
Hy(y) = A(x)[H(x) + B(x)]4(x).
For all d € §",
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d"H,(y)d = d" A(x)[H(x) + B(x)]A(x)d.
It is clear that H,(y) is positive definite if and only if H(x) + B(x) is posi-
tive definite. For any d € §" and x € X, we have

" Oh(x) 1}, (vi)
d"[H(x) + B(x)]d = d"H(x)d RS Al
[H(x) + B(x)] (x) +1§:1 ox; [, ()7

N ORI

&

>+ )y — (17)
= O [t;,p,»(yi)]z
Since #;,,(y;) is either convex or concave on €,
t, (vi) .
G=t— if m;, =0
Oh(x) 1y () _ ) 00T
Oxi [, 0] |, b0
D\l L A i <
o Min<0
jp, if mj, =0
=
bip, if M;, <0
we further have
) + B+ i (a5mp) i (-Mi) ).
<i<n ’
Thus, if for every i = 1,...,n, one of the following two inequalities
Aip; = — i, mip, 20
or
bi,l’i > ’17 Ml}Pi <0
holds, then we have
d"[H(x) + B(x)]d=0.
Thus, Ah,(y) is a convex function on Y, for p;€ B;,i=1,2,...,n, if all
B; # @, i=1,2,...,n. Furthermore, h,(y) is strictly convex on Y, for
p,-GB,-,i:1,2,...,n,ifallBi7é(Z), zzl,,n [l
Without loss of generality, we can assume that {; # 0 and #; # 0. Let
J ={iln; < 0}
I={1,....n}\I

T={1,....n\J.
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Clearly, / is increasing with respect to x; if i € I, decreasing with respect to
x; if i€ J, and neither increasing nor decreasing with respect to x; if
i€INJ. Foraniec INJ, we must have {; < 0 and 5, > 0.

Set B; in (13) can be specified for i € I,J and 1N J,

{pi| max{O, _C%} <m,-7p/} U {pi| 0=M;, =m;, > —%
B; = {pf\ 0<my, <M, < —f} U {pi\ M) < min{O, —i}

We can conclude the following from (18).

Remark 2.1. (1) If 2=0, h is already a convex function. There exist many
transformations x = 7,(y)(e.g. t,(y) =») such that B;#( for all
i=1,...,n. Thus function A,(y) retains a convexity. It implies that a
convex function is always a hidden convex function.

(i) If 2 <0, and INJ # 0, then B; = () for any i € INJ. It implies that
a non-monotone nonconvex function # on X cannot be convexified
(using the method proposed in this paper).

(iii) I 2 < 0, then B; = {p,.| .y <m,~,,,[} forie 1.
(iv) If 2 <0, then B; = {p,-]M,-ypl. < - ”i} forieJ.
Remark 2.2. 1t is obvious that the resulted set B; depends on a chosen

transformation x = 1,(y). If we take x = y'/?, ie., x; :y}/p",i: 1,...,n,
then we have

Lri(>0 i<

Mg = 2, 0P (19)
I; (<0)7 pl>1
ri>0 i<l

Mi.p- = 1,i ( )7 P s (20)
. upl(<0)7 pl>1

<—oo,min{1,1+§—‘;f}}u[1,1+%} el

B; = [1+%,1}U[max{l,1+ﬁ}a+oo> reJ.

n;

[1+%,1}u[1,1+%} ieInJ
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If we take x = —%111(1 +y), ie., x;= —pi_ln(l +yi),i=1,...,n, then we
have

mlp, —Mi,p,- =D
and

i_,o] ielinJ

Remark 2.3. There are many nonconvex functions which are hidden con-
vex. If A is strictly monotone and /U J = {1,...,n}, then & must be a hid-
den convex function. In fact, when /4 is strictly monotone and
TUJ ={l,...,n}, if we take a transformation x = #,(y) that satisfies

B; = {Pi! -z Smi.,p,} #0, wheniel,

and
B; = {,4’7z'|]‘4i,pf< _/L} #0, whenie/,

n;
then the transformed function /(z,(y)) must be convex when p; € B;,i =
l,...,n. For example, if we take x;=t;,(yi)= —l%l_ln(l—i—
yi) for i € I and take x; = l}[ln(l +y;) for i € J, then B; # () when p; 1s large
enough, i = 1,...,n. Therefore, i(,(y)) is convex when p;, i = 1,2,...,n, are
large enough. Thus, a strictly monotone function is always hidden convex.
An illustrative example is that A(x) = sin(x), x € (—n/2,+n/2), is not con-
vex, but hidden convex.

3. Equivalent Convex Programming Problem

Theorem 2.1 provides us a basis to identify a class of hidden convex pro-
gramming problems. By adopting a selected transformation (3), we can
convert the primal problem (1) into the following formulation:

min g, () =go <tp(y)>

st g0) =6 (40)) <by i= 1

yvey,
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where Y, = {y € R"|l;<t;,(y;))<u;,i=1,...,n} is a box and ¢, satisfies the
conditions of Theorem 2.1.
The equivalence between (1) and (21) is clear.

THEOREM 3.1. Assume that #,(y) is a one-to-one mapping with
X =1t,(Y,) and both ¢, and t;l are continuous. Then y* is a global or local
optimal solution to (21) if and only if x* = 7,(»*) is a global or local opti-
mal solution to (1).

Proof. By the facts that ¢, is a one-to-one mapping and both #, and t;l
are continuous, we can obtain the above conclusion easily (see [7]). O

DEFINITION. If there exists a one-to-one mapping x = #,(y) such that
(21), an equivalent transformation of a programming problem (1), is con-
vex, then (1) is called a hidden convex minimization problem.

Let nf.‘ and Cf.‘,k =0,1,...,m, be upper and lower bounds of %x(f) over
X,i=1,...,n, respectively, i.e.
0gr(x)
k<
{i < min Ox, (22)
Igk(x)
ks, 2
= T Ox; (23)
Fori=1,2,...,nand k=0,1,...,m, let
dfy, = mip {Es(EF) + Mip (=) (24)
b, = mipts(nf) + Mipfs(—nf) (25)
Jk < min d"Hy.(x)d (26)
xeX,||d||=1
Af = {Pi|af-fpi> — ey My, =0}
U{pilbf, = — A, My <0} (27)
/E( = {pi|affpl_ > —/lk, m; p, 20}
U {pilbf, > =ik, M;p, <0} (28)
A=A (29)

Ai =MLy A} (30)



220 D. LI ET AL.

A ={p=p1,....pn)lpi € 4i,i=1,...,n} (31)

A :{P:(le-wpn)‘l?ief‘fiai:17-'-’”}7 (32)

where Hy(z) is the Hessian of g, at z,d € R",s(-),m;,, and M;, are
defined by (8), (9), and (10), respectively.

THEOREM 32. Assume that in (21) ¢;,,,i = 1,...,n, are strictly monotone
functions on Q; and satisfy #;,(y;) # 0 for any y; € Q;. Furthermore, for
any i = 1,...,n,t,;,, 1s either convex or concave on €;.

If A#(,ie. A;#( forall i=1,2,...,n, then the problem (21) is a con-
vex programming problem when p€ A. If A#(,ie,A;#( for all
i=1,2,...,n, then the problem (21) is a strictly convex programming
problem when p € A.

Proof. If A #0, ie. for all i=1,...,n, A; # 0, it implies that for any
k=0,1,... m,i= 1,...,n,Af." # (. From Theorem 2.1 we know that
g (1,(»)) is convex on Y, when p; € 4%, i=1,...,n. Thus, all the functions
gk(t,(»)),k=0,1,...,m, are convex on Y, when p € 4. We can conclude
that the programming problem (21) is convex on Y, when p € 4. Similarly,
the problem (21) is strictly convex when p € A4 if 4 # (). O

From Theorems 3.1 and 3.2, we know that the problem (1) can be con-
verted into an equivalent convex programming problem (21) if 4 # () when
gi,1=0,1,...,m, and ¢, satisfy the conditions in Theorem 3.2.

Without loss of generality, we can assume that C;‘ # 0 and ¥ # 0 for all
k=0,1,....mandi=1,... ,n. Letfori=1,2,...,n,

L={k|F>0, k=0,1,...,m} (33)
Ji={k|n*<0, k=0,1,....,m} (34)
L=A{0,1,....m}\J (35)
Ji={0,1,...,m}\J.. (36)

If k € I;, then A¥ in (27) reduces to

/lk )Lk
Af( = {pi | n/ZfJJi> max{O, _?}} ) {pi | 0>Ml'7pi>mfspi> _$};
; i

If k € J;, then A¥ in (27) reduces to

l )\4
Ak = {pi | 0<myp, <My < —Zﬁ} U {pi | Mip < min{O,—n—l,Z}};
; i
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If k € I; N J;, then A¥ in (27) reduces to

Ak Ak
A? = {Pi | 0<mp, <M;p < _C_k} {Pl | 0= M;p, =mp > _W—k};
i i

Then

)
A= {pl\max{o max[ ] } mip, <M;p, Smm{ —IIE}}
€l; C kel, Cl’
. . Ak
U9 pilmaxycjq — i, < min0, $ mingey, | —— .
i

(37)

Note from Remark 2.1 that if there exists k € I; N J; such that 1, < 0, then
A; = 0.

Remark 3.1. The set A; depends on the transformation chosen. For
instance, if we take x; = 1;,,(y;) = yl/ then we have m;, and M;, in (19)
and (20), respectively. Thus we have

Akl . | Ak
A; = [1 + max kk ,1—|—m1n{0,m1n[ kz‘ ]H
kel kel | (]

Akl Al
U[l+max{0,max[kg]},l+ I /‘kl]
kedi | n; kedi 1;
. )uk[

. Axli . Lkl
Therefore, if rllcaealgl( z < rrnn{O,glel}’l_[ & 1} or max{0, max[ i ]} < min R

the programming problem (21) is a convex programming problem for
Di GA,',Z.: 1,2,...,7’1

Obviously, there are many transformations that may convert the primal
problem (1) into a convex programming problem. A natural question to
ask is if there is a best choice among different transformations. A transfor-
mation to serve as a best choice should have the largest freedom for p to
perform convexification. From (37), it is clear that if a transformation x =
t,(y) satisfies:

)ku,

then

miy, = M;p, and {M;,|pi€ R} =R, foranyi=1,...,n, (38)

then A4; # () when
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{maX{O,maX [— l—” } < min [_i_/;z] }
kel; G kel; G
Ak . . Ak
U{r;lg( [—%] < mln{O,glel}} [_775{} }} # (.

There do exist transformations that satisfy (38). For example, if we take
lip(vi) = 5 Inyi, o1 11, (i) = 2 In(1 + 1), then we have M;,, = m;,, = —p; and
{Ml',pi|pl' € R} = R, if we take [1'7171.()/,' = —ilnyi, or l‘,'J,i(y,') = —[%’111(1 +%),
then we have M, ,, = m;,, = p; and {M,,|p; € R} = R.

By identifying the best choices among different transformations, we can
now obtain the following conditions for hidden convex programming prob-
lems that are independent of transformations.

THEOREM 3.3. Suppose g; € C*(X),j=0,1,...,m. If, in addition, for each

i=1,...,n, at least one of the following inequalities holds:
Ak , A
max{O,maX [—%]}émm{——ﬁ} (39)
ke[,' él /CEI,‘ gl
or
yi Ak
max{——i} < min{O,min [ — —2] }, (40)
kEJf ’71 kEJi nl

then the problem (1) is a hidden convex programming problem. If, for each
i=1,...,n, the inequality (39) or the inequality (40) is strict, then problem
(1) is a hidden strictly convex programming problem.

Proof. Since for each i =1,...,n, one of (39) and (40) holds, if we take
transformation x = ,(y) satisfying (38), then 4; # () forall i=1,...,n. By
Theorem 3.2, we know that the programming problem (21) is convex on Y,
when p; € A;;i = 1,...,n. Thus, the original problem (1) is a hidden convex
problem. If (39) or (40) is strict and if we take transformation x = 7,(y) sat-
isfying (38), then 4; # (. So the programming problem (21) is strictly convex
on Y, when p; € A;,i = 1,...,n. Thus, the original problem (1) is a hidden
strictly convex problem if (39) or (40) is strict foreach i=1,...,n. O

We should emphasize here that no actual transformation is needed when
judging if a problem is a hidden convex problem or not. If the conditions
in Theorem 3.3 are satisfied, the primal problem (1) is a hidden convex
problem. We can simply find the global minimum of (1) by using certain
existing efficient local search algorithms in the literature.
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EXAMPLE 3.1. We now consider the following nonconvex optimization
problem:

1 3
min  go(x) :§xf —i-Ex% —3x1 —2x;

1
st.ogi(x) =—x —Ex% — 14x; — 15x, +40<0
1<x<2, i=1,2. (41)

Obviously, we have that

c?z—zsagaifx)zx%—sg =1
1
8= 1<8§l§:):3x2—2<4:n3

Let Hy(x) and H,(x) be the Hessian of g, and g, at x, respectively,

Ho(x) = [231 (3)],

-2 0
H 1 (X) - [ 0 -1 :| .
The minimal eigenvalue of matrix Hy(x) is

2X1 1 <X < %
AO(X>_{3 3ax<2
for any 1<x;<2 and the minimal eigenvalue of matrix H;(x) is 4;(x) = =2

for any x € X. So we have 1y = minycx 4o(x) =2 and 4} = minyex 4;(x) =
—2. Notice that the function gy(x) is convex and the function g;(x) is con-
cave. It is easy to see that I, = 0,1, = {0,1}, J, = {1},J; = {0}, I, = {0},
L ={1},J, ={1},J, = {0}. For i =1, we have

2 ) 1 ] )
max{ ——f} = ——8: -2< ——:min{O,—A—i} :min{O,min [——:] }
ke, ny n 8 m ken |

(40) holds for i = 1; For i = 2, we have
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(40) also holds for i = 2. Thus, by Theorem 3.3, the problem (41) is hid-
den strictly convex. In fact, the primal problem (41) has only one local
minimum x* = (1.7321, 1.0000)” with f(x*) = —3.9641 and this local min-
imum is its global minimum.

We emphasize that no exact eigenvalues of the Hessian matrices are
required when judging if a nonconvex problem is hidden convex or not. The
proposed method only requires some estimated bounds of the minimum ei-
genvalues and the first-order derivatives. In the literature, there are many
methods that estimate a lower bound for the minimum eigenvalue. A classi-
cal method is by using the Gerschgorin theorem. It is evident that the tighter
the bound, the higher the probability for a problem to be convexified.

4. The Hidden Convex Quadratic Problem

We consider the following general quadratic problem in this section:

min  go(x ZZCZU x,xj—i-Zb xi + ¥

i=l j=
n n
s.t. gr(x) ZZCZU x,x,—i—Zb x,—i—c( <0,k=1,.
i=1 j=1
xeX—{(xl,...,xn)ll,sxi<u,-,z:1,...,n}, (42)

where, without loss of generality, we assume that ag() ")

k=0,1,...,m. The following are obvious.

B
%M 2§:Uxﬁ% i=1,....mk=01,...m

8)(?[8)6]' v

= 2<Zaff)l_j-s<ag()> +af.f)u_/..s( al) >) + b
V=

M n

k k k k k

;75?: 2(Za§j>uj-s<a§-)>+a,(-j)l_,<-s(—afj>>)+b,(->
L \J=1

L={k|F>0, k=0,1,...,m}

ij=1,...,n,k=0,1,...,m

Let

(k| <0, k=0,1,...,m}

I =
P={k|F=0, k=0,1,...,m}
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Ji={k|n*<0, k=0,1,...,m}
Ji={k|n >0, k=0,1,....,m}

P =1{k|n=0 k=0,1,...,m},

where function s(*) is defined in (8). Let G be the Hessian matrix of g (x).
The following are clear.

8gk(x)
8Xl'
G =2(a

ij )nxn’

k k :
i< ni, YxelXi=1,...,n,k=0,1,...,m

N

k=0,1,...,m.

Let Ar be the minimal eigenvalue of G,. Obviously, the following results
can be obtained from Theorem 3.3.
(1) If 4x=0,Yk =0,1,...,m, then the problem (42) is already a convex
programming problem.
(i) If for all i =1, ...,n, one of the following two conditions is satisfied:

=0 forall ke IO and mm{O rn1n [éﬂ } > max&

or

) ik
Jx=0 for all k € J? and mm—]; > maX{O max [Ai] }’
ked; 1; keJ; n;

then the problem (42) must be a hidden convex programming problem.
We now consider the following three special cases of the problem (42):

(a) Ifagc) =0, i j=1,...,n, k=1,...,m, the problem (42)

reduces to:

min  go(x izn:al(jox,x,—i-Zb xi + ¥

i=1 j=1

s.t. gk(x)zzb,(-k)xi+c(k)<0, k=1,....m

i=1
xeX={(x1,...,x)|i<x;<u,i=1,...,n}. (43)
This is a quadratic programming problem with linear constraints. Notice

that in this situation, A4, =0 for all k =1,...,m, and Ck—nl —b( for all
i=1,....,.nand k=1,...,m
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If A49=0, the problem (43) is already a convex programming problem.
When 4y < 0, if for all i=1,...,n, one of the following two conditions is
satisfied:

0>0and b . ">0, Vk=1,....m(i.e, I;={0,1,...,m} and I, =),

or

0 <0and b 0>0, Vk=1,...,m(ie.,J;={0,1,...,m} and J; = 0),

then the programming problem (43) must be a hidden convex program-
ming problem.

) Ifa)) =0, i#), i,j=1,...,n, k=0,1,...,m, the problem (42)
reduces to:

min  go(x Zau X; +Zb xi + ¢©

s.t. gr(x Zal,x +Zb x,—i—ck k=1,....m

xeX={(x1,...,xp) | i<xi<w;, i=1,...,n}. (44)

Then we have
(k)

Ak = min 2a;’.

1<i<n
Let

:{k|2a I s<a§,."’>> +2a ;- ( a! >+bfk)>0 k=0,1, m}
I;:{k|2a,(.ik)l, 9<al(-l.k)> +2a§i]‘)u, ( >+b,(k)<0 k=0,1, 7m}
Igz{kual(.{‘)z,s(aﬁ)+2a§j‘>ul < >+bfk =0, k=0,1, m}
Jl.:{k|2a§{‘>u,-.s<a§j‘)> +2a1;- < >+bf" <0, k=01, m}
j:{k|2a§f>ui.s<a§f)>+2a§{‘>1, < >+bf" >0, k=0,1, m}
J?:{k|2al(f)ui-s<af)>+2al(.f)l, ( (k)>—|—b(k) 0, k=0,1, ,m}
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If for all i =1,...,n, one of the following two conditions is satisfied:
4 =0 for all k € IV and
min a(k>
min {0 min Isisn }
kel; Za( I - s(a (k )) +2a( ;- s(— al(f)) —i—bgk)
min a(lk )
> max Lsisn (45)

kel 24\ - s(all)) + 2a u; - s(—al’) + b

ii
or

=0 forall keJ? and

min al(l )

min Isisn
ked; 2al(.l.k)u, s(ay (k) ) + 2a( ;- s(— (k ) + b(
min a(k)
{ 1<i<n }
= max 4 0, max )
kel 2%y, - s(a; (k )) +2a%1; - -s(— (lk)) + b
then the problem (44) must be a hidden convex programming problem.
Consider the singly and quadratically constrained quadratic problem
considered in Ben-Tal and Teboulle [2]:

min  go(x Z a(o)x2 + Z bl(o)xi + 00
i=1

(46)

s.t. a<gi(x) = Z arl(il)x,2 <cy (47)
i=1

As suggested by the double duality approach in [2], problem (47) is a hid-
den convex problem which is evidenced by a transformation of
x; = —sgn(b; b )\/— Notice that the transformation in [2] is not an equiva-
lent transformatlon Selecting the transformation of x; = —sgn( )\/_ dis-
cards its complement transformation x; = sgn(bl(.o) )+/¥i which w111 be never
optimal in problem (47).

(¢) If n = 2, the problem (42) reduces to the form:

min  go(x) = as l)xlz + 2a§%)x1x2 + azg)xg bgo)xl + bgo)xz +c0

s.t. gr(x) = agi)x% + 2a§§)x1xz + agx% + b(lk)xl + bgk)xz +cM <o (48)

k=1,....m
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xeX={(x;,x2) | i<x;i<u,i=1,2}.

Then we have

(o) (k) (k)
Let
2 (aﬁ,k)l,- . s(af-l-k)) + ag,@ u; -
n={K
k=0,1,....,m
. 2( ;- s( )+a( Ju; -
-4
k=0,1,...,m

1? =
k=0,1,..
Z(a(]")u,
e
k=0,1,
z(a<k>u,
- {k\
k=0,1,
2<a(uk)u,
JY = k‘

k=0,1,...

2( - s(dP) + aPu;
|

.,m

Sl + %

,m

s(—af)) +a

+a

k
S(_az(i())

(k)

s(—a;’) +a

s(—ay)) +dui -

- s(=d) +a

~af)) +a

k
e

(k)
12 li

k
H

(k)
12 M

(k)

12 Ui

i's(alz

azg ) +4<al2 )2.

(a(12>) + a(lz)“l S

is(aly)

(k)

(a(lz))+a§2>l :

u; - s(ay)

(k)

+ agz)

+ayu-

)+ a(lz)u, .

li-s

D. LI ET AL.

If for both i=1,2, one of the following two conditions is satisfied:
A =0 for all k € Il-0 and

min{ 0, min

(k)
an

+ a(zl?

-y

(k)
(”11 - azz

()

kel; 2( l - sa /C))+a(k) Ui+ s(—a

(k)
- \/(an )

= max

agl‘i) +a

(k)
2

(k)

) +aa)?

)+a121 s(a(/‘ )+a

(k)
12 Ui

)+

or

K<l 2( ;- s(a )+ au - s(—a) + al i s(@l)) + affu; -

s(— alz)) b(k
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A =0 for all k € J? and

k
maxd 0, max a) +a§2) - \/(a(11> — ) +4(ay)’
2 (P 5(a) + a1 -s(—all) + a5 - o(al) + - s(—a§)) + b

< min al)) +d) — \/(a“ — %)) +4(ay))’
keli Z(a(/‘ wi-s(aly)) + 'l s(—al)) + alu; - s(a) + als li-s(—agl?)) +5

then the problem (48) must be a hidden convex programming problem.

In conclusion, for any of the three problems (43), (44) and (48), we can
determine if it is a hidden convex problem or not just by examining its
coefficients.

EXAMPLE 2:

3
min  go(x) = x7 + 2)(?2 x1 —7x2

s.t. gi(x) = —x1 + x2 —2x1+3x —5<0

3 3
g (x) = x1 —|—2x2 7%1 2x, <0
1<M<2 i=1,2. (49)

The following can be derived easily.

Fori=1,
(1 k=0
2l + 2 () 40 = | 6 K=
1
s k=2
2 )
(3 k=0
2l )+ 2 sl o9 = 4 K=
1
[ 3 k=2
For i =2,
4 k=0
2"&];)12 : s(ag; ) + 2a§]§)u2 -s(= azz )+ b 5 k=1
Ll k=2,
-1 k=0
20%uy - s(al)y + 280 - s(—al)y 5P =L 7 k=1
4 k=2.
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Itis easy to verify /; = {0}, I, = {1,2}, I? =0, J; = {1}, J; ={0,2},J) =
0, L ={1,2}, L={0},15=0, J,={0}, J» ={1,2}, J) = 0. Furthermore,
we have

0
1

min < =

1<ig2

k
k
k

2.

1
1
1
2

For i = 1, we have

min a(k)
] ii
1<ig?2

min
ked 2w - s(a))) +2a)h - s(=d) + 6"

2 o
= — —_ = X _—
3'12f 374 "4

min a(k)
11
1<i<2

= max<{ 0, max
ken 2alu - s(al)) + 241 - s(=afy) + b

Thus (46) holds. Also for i = 2, we have

min a(k)
; ii
1<ig?2

ming 0, min
keh 2a< b - s(az’g))+2a§l§)uz's( agz))+b %

=1 1/2 1 1
—mm{o’?T}—‘?‘z
)

min CZ(

1<i<2 "

= max .
kel 2‘1%2 L - S(aéz)) + 2‘122 uy - $(— ag; ) + bgk)

Thus (45) holds. The problem (49) is therefore a hidden strictly convex
programming problem. Its unique minimum x* = (1.0402, 1.7268) is a glo-
bal minimal point with the global minimal value of f* = —7.5731.

5. Epilogue

A hidden convex problem has an equivalent counterpart in a form of a
convex programming. This paper provides certain sufficient conditions to
identify hidden convex programming problems which consist a subclass of
nonconvex optimization problems. The results in this paper extend the
reach of convex programming to hidden convex programming, thus
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expanding significantly the problem domain whose local optimum is also
global at the same time.

Although no actual transformation is needed when checking the hidden
convexity of a problem, we should emphasize that numerical methods for
solving convex problems perform much better in general than numerical
methods for local minimization. Thus, trade-off exists between whether or
not performing an actual transformation when solving a hidden convex
problem.

An interesting research subject to explore is how likely a nonconvex min-
imization problem is hidden convex, or the percentage of hidden convex
problems in nonconvex optimization. To illustrate this point, we will
discuss in the following a one-dimensional quadratic optimization problem
with a single constraint.

min  f(x) = e, x> + ax + ¢
s.t. g(x) = e;x* + bx + d<0
1 <x<2, (50)

where random parameters e,,e; € {1, —1}, random parameters a,b € [/, /]
and / is a positive number. Assume that ey, e¢;,a and b are independent.
Assume further that both ¢y and e; have the same probabilities of taking
either 1 or —1, while both ¢ and b are uniformly distributed in [/, /]. The
probability that the quadratic problem (50) is hidden convex will be inves-
tigated in the following.

Obviously, if both ¢y and e; are equal to one, the problem (50) is a con-
vex programming problem. Otherwise, it is not a convex programming
problem. Thus the probability that the problem (50) is a convex program-
ming problem is p; = 1/4.

Let p,, denote the probability of a hidden convexity of the problem (50).
Notice that

f(x) =2ex +a, [ =2e,
g(x)=2eix+b, g =2e.
(Case i) When ¢y = 1,¢; = —1, we have that
24+a<f'(x) =2x+a<éd+a
—4+b<g(x)=-2x+b< -2+b
f/l — 2 g// — _2

It can be derived (see [9] for details) that in the case of ¢y =1 and
e; = —1, the probability that the problem (50) is hidden convex is bounded
from below by
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0 A
(20-2)
=2 | < i<4
=P AP T 82 <
Wo6l-6
4 :

(Case ii) Similarly, in the case of ¢y = —1 and e¢; = 1, the probability
that the problem (50) is hidden convex is bounded from below by p3 which
has the same form as p;.

(Case ii1) When ¢y = —1,¢; = —1, we have that

—4+a<f'(x)=-2x+a< —-2+a
—44+b<g'(x)=-2x+b< —2+b
f// — _2 g// _ _2
It can be derived (see [9] for details) that in the case of ¢y = —1 and

e; = —1, the probability that the problem (50) is hidden convex is bounded
from below by

1 1<2
24 4l+4
LI A IO P
pa=pitp;= 42
12 =21+ 10
L ar7 4,
T [ >

Finally, the probability that the problem (50) is hidden convex is bounded
from below by

1 1

-t - [<1

173

1 2/12-2[+1

= = <

- +1 +1 +1 - 4+ a2 1 <iI<2

Ph = P1 4172 4173 4174— 1+512—4l+8 ) ies

4 162 =

1 (1—1)

- [> 4.

FRENYP =

It is easy to check that p,>1+2 when /> 4 since (/- 1)°/2/ is increas-
ing when / > 4. Furthermore, we have that

lim .

i =-.

lﬂ+ooph 4

The outcome that 2/3 of the nonconvex problems are hidden convex in the

above example is surprisingly revealing! In the real world, there may exist
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many programming problems which are hidden convex but with a noncon-
vex representation. One important conclusion is that convexity/nonconvexity
is not an inherent property in many situations. Rather it is a character asso-
ciated with a given representation space. Study of the hidden convexity of a
programming problem, thus, is a very prominent research topic to pursue
further.
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